Oscar Propulsion

International GHG-URN Workshop IMO headquarters, London, UK

18-19 September 2023

Lars Eikeland, Director Marine Oscar Propulsion Ltd

Making Blades Better

What do rowing and paddle blades, aircraft engines and marine propellers have in common?

They stand to be revolutionised by Oscar Propulsion

Sport

By meticulously placing angled cuts or slits in rowing and paddle blades, we're enabling athletes to push themselves harder and train for longer while reducing the risk of injury.

Marine

Cavitation not only damages marine propellers, it also creates significant levels of Underwater Radiated Noise (URN) that impacts the ocean and marine fauna. Our breakthrough solution is Oscar PressurePores™.

Aviation

As our skies become more crowded, particularly in urban areas, the need for quieter aircraft engines will be paramount. Our patented Noise Prevention at Source (NPaS) technology provides the answer.

www.oscarpropulsion.com

URN harms...actions taken

- Commercial shipping growing
- Propeller cavitation main source
- IMO issued URN guidelines in 2014 updated in 2023
- Other initiatives (selective)
 - Silent notation an industry standard
 - Port of Vancouver reduces docking fees
 - Transport Canada Quiet Vessel Initiative
 - BC Ferries Long Term Underwater Noise Management Plan
 - Global Environment Facility (GEF) introduces "GloNoise Partnership"
- Legislation → shipowners' decision making

Oscar Propulsion

How **important** are noise-free propulsion solutions?

Very Important Not important Important

Most important decision making criteria when choosing propulsion solution

PressurePores[™] – how?

Six years of product development

2016 – 2018: Invention and testing of PressurePores[™] 2020: Full Scale sea trial to confirm model experiments 2021: Studies proving no compromise to the structural integrity of the propeller

Oscar Propulsion

2021: Joint research project with a global propeller manufacturer

2022/23: URN prediction module in our CFD model 2023→: Qualify and make it operational

Invention, testing & hole application Oscar Propulsion

Strategic Application 1 Str	Strategic Application 2		tegic Application 3	Strategic Application 4	
17	17		25	2.5	
	BASE_AM	SA1_AM	SA2_AM	SA3_AM	SA4_AM
Thrust (N)	290.57	290.76	288.93	288.05	288.58
Torque (Nm)	14.78	14.86	14.79	14.78	14.72
Cavitation Volume (m ³)	2.44E-06	2.10E-06	2.32E-06	2.27E-06	2.26E-06
Efficiency	59.13%	58.84%	58.76%	58.63%	58.96%
кт	0.1089	0.1090	0.1083	0.1080	0.1082
∆%Thrust		0.07%	-0.57%	-0.87%	-0.68%
∆%Torque		0.57%	0.07%	-0.01%	-0.40%
Efficiency Loss (%)		0.50%	0.64%	0.86%	0.29%
Δ %Cavitation Volume		-13.83%	-4.71%	-6.92%	-7.09%

- Guardian propeller
- 95,000 dwt
- Prop diameter ca. 7m
- Results from CFD simulation
- Optimising relationship between cavitation reduction and efficiency impact

- Princess Royal
- 7.3 dwt
- Prop diameter ca. 70cm
- Results from cavitation tunnel
- Green 33 PP | red 17 PP
- Up to 17dB noise reduction in the 200-1,000Hz band

Full Scale Trial at Sea

Oscar Propulsion

- Tested 17 & 33 pores/blade v. intact prop
- Cavitation through porthole video camera
- URN measured using traditional hydrophone system and a Hydrone
- 600 | 900 | 1200 | 1500 | 1750 | 2000 rpm
- Modification of propellers 3 hours
- No fouling in holes observed

- Validated experiment results
- 10dB URN reduction with 33 holes
- Reduced cavitation volume for modified propellers
- Frequency peaks at higher speed range showed decrease in amplitudes with more holes

7

Finite Element Analysis (FEA)

High cycle fatigue investigation

full-speed-ahead operation of the propellers at the engine MCR

- Root section: 2.55 (min 1.8)
- 0.6r section: 4.06 (min 1.6)
- PP section, >0.85r: 3.42 (min not defined)

Low cycle fatigue assessment Bollard astern operation at maximum rpm

- Root section: 2.80 (min 1.8)
- 0.6r section : 2.37 (min 1.6)
- PP Section : 2.36 (min not defined)
- Peak Stress Region : 1.62 (min not defined)

No critical effect – blade structure satisfied required safety factor limits

Oscar Propulsion

New propeller design project

Baseline propeller @ 66.8% efficiency and URN @ 124.9dB

Used baseline to redesign new propeller (upper radii of blade)

Efficiency up 1.4% to 68.2 URN up 2.3dB to 127.2dB

PP = 5 holes **Efficiency down 0.6% to 67.6%** URN reduce 2.7dB to 124.5dB

Net result

- Efficiency up 0.9%
- URN minor change

Using CFD to predict URN impact

- Traditional approach to start •
- Used Mesh structure and DAMR technique, • implying a total element count of ca. 45 million
- Noise predictions incorporated convective • effects (FW-H), acoustic analogy and Navier-**Stokes equation**

Results

- TVC 11% lower
- Turbulent kinetic energy 3.7% lower
- Vorticity 5,2% lower
- Harmonics of pressure pulses reduced by **13.9%**, 41.2% and 27.2% on 1st, 2nd and 3rd respectively
- Harmonics of Blade Rate Frequencies showed 0.4 to 3.6dB noise reduction
- The results corresponded well with cavitation tunnel results, where applicable

Figure 3.4. The number of the elements during the mesh refinement stages

4.50E+07 v (PP) 4 00E+07 Stage 0 Stage 03 3.50E+07 S 3.00E+07 \$ 2.50E+07 Adaptive Mesh Refinement Stage

Consulting offerings

Retrofit | Assess one – or more – vessels/propellers from the client's fleet

Novel | Design a new propeller for the client

Reduce URN by applying *PressurePoresTM* at agreed operating condition and level of propeller efficiency

Combine *PressurePores*[™] with other EE features

- The client provides key input data in CAD format
- Oscar Propulsion runs the simulation, using Simcenter Star-CCM+ CFD software combined with experience
- Ca. **2-6 weeks to complete**, depending on the complexity and availability of input data

Thank you!